Geometrie-Dreieck-Gleichschenkliges rechtwinkliges Dreieck

• $A = \frac{a\cdot b}{ 2}$
1 2 3 4 5 6 7 8 9 10 11 12
$a = \frac{A \cdot 2}{ b}$
1 2 3 4 5 6 7 8 9 10 11 12
$b = \frac{A \cdot 2}{ a}$
1 2 3 4 5 6 7 8 9 10 11 12
$a^{2} + b^{2}=c^{2}$
$c =\sqrt{a^{2} + b^{2} }$
1 2 3 4 5 6 7 8 9 10 11 12
$a =\sqrt{c^{2} - b^{2} }$
1 2 3 4 5 6 7 8 9 10
$b =\sqrt{c^{2} - a^{2} }$
1 2 3 4 5
$h^{2} = p\cdot q$
$h = \sqrt{p\cdot q}$
1 2 3 4
$q = \frac{h^{2} }{p}$
1 2 3 4
$p = \frac{h^{2} }{q}$
1 2 3
$a^{2} = c\cdot p \qquad b^{2} = c\cdot q$
$a = \sqrt{c\cdot p}$
1 2 3
$c = \frac{a^{2} }{p}$
1 2 3 4
$p = \frac{a^{2} }{c}$
1 2 3 4

Beispiel Nr: 07
$\text{Gegeben:}\\\text{Kathete} \qquad b \qquad [m] \\ \text{Kathete} \qquad a \qquad [m] \\ \\ \text{Gesucht:} \\\text{Fläche} \qquad A \qquad [m^{2}] \\ \\ A = \frac{a\cdot b}{ 2}\\ \textbf{Gegeben:} \\ b=1\frac{2}{3}m \qquad a=\frac{4}{5}m \qquad \\ \\ \textbf{Rechnung:} \\ A = \frac{a\cdot b}{ 2} \\ b=1\frac{2}{3}m\\ a=\frac{4}{5}m\\ A = \frac{\frac{4}{5}m\cdot 1\frac{2}{3}m}{ 2}\\\\A=\frac{2}{3}m^{2} \\\\\\ \small \begin{array}{|l|} \hline b=\\ \hline 1\frac{2}{3} m \\ \hline 16\frac{2}{3} dm \\ \hline 166\frac{2}{3} cm \\ \hline 1666\frac{2}{3} mm \\ \hline 1666666\frac{2}{3} \mu m \\ \hline \end{array} \small \begin{array}{|l|} \hline a=\\ \hline \frac{4}{5} m \\ \hline 8 dm \\ \hline 80 cm \\ \hline 800 mm \\ \hline 8\cdot 10^{5} \mu m \\ \hline \end{array} \small \begin{array}{|l|} \hline A=\\ \hline \frac{2}{3} m^2 \\ \hline 66\frac{2}{3} dm^2 \\ \hline 6666\frac{2}{3} cm^2 \\ \hline 666666\frac{2}{3} mm^2 \\ \hline 0,00667 a \\ \hline 6,67\cdot 10^{-5} ha \\ \hline \end{array}$