Geometrie-Dreieck-Gleichschenkliges rechtwinkliges Dreieck

$A = \frac{a\cdot b}{ 2}$
1 2 3 4 5 6 7 8 9 10 11 12
$a = \frac{A \cdot 2}{ b}$
1 2 3 4 5 6 7 8 9 10 11 12
$b = \frac{A \cdot 2}{ a}$
1 2 3 4 5 6 7 8 9 10 11 12
$a^{2} + b^{2}=c^{2}$
$c =\sqrt{a^{2} + b^{2} }$
1 2 3 4 5 6 7 8 9 10 11 12
$a =\sqrt{c^{2} - b^{2} }$
1 2 3 4 5 6 7 8 9 10
$b =\sqrt{c^{2} - a^{2} }$
1 2 3 4 5
$h^{2} = p\cdot q$
$h = \sqrt{p\cdot q}$
1 2 3 4
$q = \frac{h^{2} }{p}$
1 2 3 4
$p = \frac{h^{2} }{q}$
1 2 3
$a^{2} = c\cdot p \qquad b^{2} = c\cdot q$
$a = \sqrt{c\cdot p}$
1 2 3
$c = \frac{a^{2} }{p}$
1 2 3 4
$p = \frac{a^{2} }{c}$
1 2 3 4
Beispiel Nr: 04
$\begin{array}{l} \text{Gegeben:}\\\text{Kathete} \qquad b \qquad [m] \\ \text{Fläche des Dreiecks} \qquad A \qquad [m^{2}] \\ \\ \text{Gesucht:} \\\text{Gegenkathete zu} \alpha \qquad a \qquad [m] \\ \\ a = \frac{A \cdot 2}{ b}\\ \textbf{Gegeben:} \\ b=12m \qquad A=14m^{2} \qquad \\ \\ \textbf{Rechnung:} \\ a = \frac{A \cdot 2}{ b} \\ b=12m\\ A=14m^{2}\\ a = \frac{14m^{2} \cdot 2}{ 12m}\\\\a=2\frac{1}{3}m \\\\\\ \small \begin{array}{|l|} \hline b=\\ \hline 12 m \\ \hline 120 dm \\ \hline 1,2\cdot 10^{3} cm \\ \hline 1,2\cdot 10^{4} mm \\ \hline 1,2\cdot 10^{7} \mu m \\ \hline \end{array} \small \begin{array}{|l|} \hline A=\\ \hline 14 m^2 \\ \hline 1,4\cdot 10^{3} dm^2 \\ \hline 1,4\cdot 10^{5} cm^2 \\ \hline 1,4\cdot 10^{7} mm^2 \\ \hline \frac{7}{50} a \\ \hline 0,0014 ha \\ \hline \end{array} \small \begin{array}{|l|} \hline a=\\ \hline 2\frac{1}{3} m \\ \hline 23\frac{1}{3} dm \\ \hline 233\frac{1}{3} cm \\ \hline 2333\frac{1}{3} mm \\ \hline 2333333\frac{1}{3} \mu m \\ \hline \end{array} \end{array}$