-
<<
>>
G
B
I
$ A = \frac{a\cdot b}{ 2} $
$ a = \frac{A \cdot 2}{ b} $
$ b = \frac{A \cdot 2}{ a} $
$ c =\sqrt{a^{2} + b^{2} } $
$ a =\sqrt{c^{2} - b^{2} } $
$ b =\sqrt{c^{2} - a^{2} } $
$ h = \sqrt{p\cdot q} $
$ q = \frac{h^{2} }{p} $
$ p = \frac{h^{2} }{q} $
$ a = \sqrt{c\cdot p} $
$ c = \frac{a^{2} }{p} $
$ p = \frac{a^{2} }{c} $
Geometrie-Dreieck-Gleichschenkliges rechtwinkliges Dreieck
$A = \frac{a\cdot b}{ 2}$
1
2
3
4
5
6
7
8
9
10
11
12
$a = \frac{A \cdot 2}{ b}$
1
2
3
4
5
6
7
8
9
10
11
12
$b = \frac{A \cdot 2}{ a}$
1
2
3
4
5
6
7
8
9
10
11
12
$a^{2} + b^{2}=c^{2}$
$c =\sqrt{a^{2} + b^{2} }$
1
2
3
4
5
6
7
8
9
10
11
12
$a =\sqrt{c^{2} - b^{2} }$
1
2
3
4
5
6
7
8
9
10
$b =\sqrt{c^{2} - a^{2} }$
1
2
3
4
5
$h^{2} = p\cdot q$
$h = \sqrt{p\cdot q}$
1
2
3
4
$q = \frac{h^{2} }{p}$
1
2
3
4
$p = \frac{h^{2} }{q}$
1
2
3
$a^{2} = c\cdot p \qquad b^{2} = c\cdot q $
$a = \sqrt{c\cdot p}$
1
2
3
$c = \frac{a^{2} }{p}$
1
2
3
4
$p = \frac{a^{2} }{c}$
1
2
3
4
Beispiel Nr: 03
$\begin{array}{l}
\text{Gegeben:}\\\text{Höhe} \qquad h \qquad [m] \\
\text{Hypotenusenabschnitt} \qquad q \qquad [m] \\
\\ \text{Gesucht:} \\\text{Hypotenusenabschnitt} \qquad p \qquad [m] \\
\\ p = \frac{h^{2} }{q}\\ \textbf{Gegeben:} \\ h=4m \qquad q=7m \qquad \\ \\ \textbf{Rechnung:} \\
p = \frac{h^{2} }{q} \\
h=4m\\
q=7m\\
p = \frac{(4m)^{2} }{7m}\\\\p=2\frac{2}{7}m
\\\\\\ \small \begin{array}{|l|} \hline h=\\ \hline 4 m \\ \hline 40 dm \\ \hline 400 cm \\ \hline 4\cdot 10^{3} mm \\ \hline 4\cdot 10^{6} \mu m \\ \hline \end{array} \small \begin{array}{|l|} \hline q=\\ \hline 7 m \\ \hline 70 dm \\ \hline 700 cm \\ \hline 7\cdot 10^{3} mm \\ \hline 7\cdot 10^{6} \mu m \\ \hline \end{array} \small \begin{array}{|l|} \hline p=\\ \hline 2\frac{2}{7} m \\ \hline 22\frac{6}{7} dm \\ \hline 228\frac{4}{7} cm \\ \hline 2285\frac{5}{7} mm \\ \hline 2285714\frac{2}{7} \mu m \\ \hline \end{array} \end{array}$