-
<<
>>
G
B
I
$ A = \frac{1}{2}\cdot e\cdot f $
$ e = \frac{2\cdot A}{ f} $
$ f = \frac{2\cdot A}{ e} $
Geometrie-Viereck-Raute
$A = \frac{1}{2}\cdot e\cdot f$
1
2
3
4
5
6
7
8
9
10
11
12
$e = \frac{2\cdot A}{ f}$
1
2
3
4
5
6
7
8
9
10
11
12
$f = \frac{2\cdot A}{ e}$
1
2
3
4
5
6
7
8
9
10
11
12
Beispiel Nr: 01
$\begin{array}{l}
\text{Gegeben:}\\\text{Fläche} \qquad A \qquad [m^{2}] \\
\text{Diagonale e} \qquad e \qquad [m] \\
\\ \text{Gesucht:} \\\text{Diagonale f} \qquad f \qquad [m] \\
\\ f = \frac{2\cdot A}{ e}\\ \textbf{Gegeben:} \\ A=2m^{2} \qquad e=8m \qquad \\ \\ \textbf{Rechnung:} \\
f = \frac{2\cdot A}{ e} \\
A=2m^{2}\\
e=8m\\
f = \frac{2\cdot 2m^{2}}{ 8m}\\\\f=\frac{1}{2}m
\\\\\\ \small \begin{array}{|l|} \hline A=\\ \hline 2 m^2 \\ \hline 200 dm^2 \\ \hline 2\cdot 10^{4} cm^2 \\ \hline 2\cdot 10^{6} mm^2 \\ \hline \frac{1}{50} a \\ \hline 0,0002 ha \\ \hline \end{array} \small \begin{array}{|l|} \hline e=\\ \hline 8 m \\ \hline 80 dm \\ \hline 800 cm \\ \hline 8\cdot 10^{3} mm \\ \hline 8\cdot 10^{6} \mu m \\ \hline \end{array} \small \begin{array}{|l|} \hline f=\\ \hline \frac{1}{2} m \\ \hline 5 dm \\ \hline 50 cm \\ \hline 500 mm \\ \hline 5\cdot 10^{5} \mu m \\ \hline \end{array} \end{array}$