Geometrie-Viereck-Raute



Beispiel Nr: 09
$ \text{Gegeben:}\\\text{Fläche} \qquad A \qquad [m^{2}] \\ \text{Diagonale e} \qquad e \qquad [m] \\ \\ \text{Gesucht:} \\\text{Diagonale f} \qquad f \qquad [m] \\ \\ f = \frac{2\cdot A}{ e}\\ \textbf{Gegeben:} \\ A=\frac{1}{3}m^{2} \qquad e=1m \qquad \\ \\ \textbf{Rechnung:} \\ f = \frac{2\cdot A}{ e} \\ A=\frac{1}{3}m^{2}\\ e=1m\\ f = \frac{2\cdot \frac{1}{3}m^{2}}{ 1m}\\\\f=\frac{2}{3}m \\\\\\ \small \begin{array}{|l|} \hline A=\\ \hline \frac{1}{3} m^2 \\ \hline 33\frac{1}{3} dm^2 \\ \hline 3333\frac{1}{3} cm^2 \\ \hline 333333\frac{1}{3} mm^2 \\ \hline 0,00333 a \\ \hline 3,33\cdot 10^{-5} ha \\ \hline \end{array} \small \begin{array}{|l|} \hline e=\\ \hline 1 m \\ \hline 10 dm \\ \hline 100 cm \\ \hline 10^{3} mm \\ \hline 10^{6} \mu m \\ \hline \end{array} \small \begin{array}{|l|} \hline f=\\ \hline \frac{2}{3} m \\ \hline 6\frac{2}{3} dm \\ \hline 66\frac{2}{3} cm \\ \hline 666\frac{2}{3} mm \\ \hline 666666\frac{2}{3} \mu m \\ \hline \end{array}$