Geometrie-Viereck-Raute

$A = \frac{1}{2}\cdot e\cdot f$
1 2 3 4 5 6 7 8 9 10 11 12
$e = \frac{2\cdot A}{ f}$
1 2 3 4 5 6 7 8 9 10 11 12
$f = \frac{2\cdot A}{ e}$
1 2 3 4 5 6 7 8 9 10 11 12
Beispiel Nr: 06
$\begin{array}{l} \text{Gegeben:}\\\text{Fläche} \qquad A \qquad [m^{2}] \\ \text{Diagonale e} \qquad e \qquad [m] \\ \\ \text{Gesucht:} \\\text{Diagonale f} \qquad f \qquad [m] \\ \\ f = \frac{2\cdot A}{ e}\\ \textbf{Gegeben:} \\ A=120m^{2} \qquad e=80m \qquad \\ \\ \textbf{Rechnung:} \\ f = \frac{2\cdot A}{ e} \\ A=120m^{2}\\ e=80m\\ f = \frac{2\cdot 120m^{2}}{ 80m}\\\\f=3m \\\\\\ \small \begin{array}{|l|} \hline A=\\ \hline 120 m^2 \\ \hline 1,2\cdot 10^{4} dm^2 \\ \hline 1,2\cdot 10^{6} cm^2 \\ \hline 1,2\cdot 10^{8} mm^2 \\ \hline 1\frac{1}{5} a \\ \hline 0,012 ha \\ \hline \end{array} \small \begin{array}{|l|} \hline e=\\ \hline 80 m \\ \hline 800 dm \\ \hline 8\cdot 10^{3} cm \\ \hline 8\cdot 10^{4} mm \\ \hline 8\cdot 10^{7} \mu m \\ \hline \end{array} \small \begin{array}{|l|} \hline f=\\ \hline 3 m \\ \hline 30 dm \\ \hline 300 cm \\ \hline 3\cdot 10^{3} mm \\ \hline 3\cdot 10^{6} \mu m \\ \hline \end{array} \end{array}$