-
<<
>>
G
B
I
$ A = \frac{1}{2}\cdot e\cdot f $
$ e = \frac{2\cdot A}{ f} $
$ f = \frac{2\cdot A}{ e} $
Geometrie-Viereck-Raute
$A = \frac{1}{2}\cdot e\cdot f$
1
2
3
4
5
6
7
8
9
10
11
12
$e = \frac{2\cdot A}{ f}$
1
2
3
4
5
6
7
8
9
10
11
12
$f = \frac{2\cdot A}{ e}$
1
2
3
4
5
6
7
8
9
10
11
12
Beispiel Nr: 02
$\begin{array}{l}
\text{Gegeben:}\\\text{Diagonale f} \qquad f \qquad [m] \\
\text{Fläche} \qquad A \qquad [m^{2}] \\
\\ \text{Gesucht:} \\\text{Diagonale e} \qquad e \qquad [m] \\
\\ e = \frac{2\cdot A}{ f}\\ \textbf{Gegeben:} \\ f=1m \qquad A=4m^{2} \qquad \\ \\ \textbf{Rechnung:} \\
e = \frac{2\cdot A}{ f} \\
f=1m\\
A=4m^{2}\\
e = \frac{2\cdot 4m^{2}}{ 1m}\\\\e=8m
\\\\\\ \small \begin{array}{|l|} \hline f=\\ \hline 1 m \\ \hline 10 dm \\ \hline 100 cm \\ \hline 10^{3} mm \\ \hline 10^{6} \mu m \\ \hline \end{array} \small \begin{array}{|l|} \hline A=\\ \hline 4 m^2 \\ \hline 400 dm^2 \\ \hline 4\cdot 10^{4} cm^2 \\ \hline 4\cdot 10^{6} mm^2 \\ \hline \frac{1}{25} a \\ \hline 0,0004 ha \\ \hline \end{array} \small \begin{array}{|l|} \hline e=\\ \hline 8 m \\ \hline 80 dm \\ \hline 800 cm \\ \hline 8\cdot 10^{3} mm \\ \hline 8\cdot 10^{6} \mu m \\ \hline \end{array} \end{array}$