Geometrie-Viereck-Raute

$A = \frac{1}{2}\cdot e\cdot f$
1 2 3 4 5 6 7 8 9 10 11 12
$e = \frac{2\cdot A}{ f}$
1 2 3 4 5 6 7 8 9 10 11 12
$f = \frac{2\cdot A}{ e}$
1 2 3 4 5 6 7 8 9 10 11 12
Beispiel Nr: 03
$\begin{array}{l} \text{Gegeben:}\\\text{Diagonale f} \qquad f \qquad [m] \\ \text{Fläche} \qquad A \qquad [m^{2}] \\ \\ \text{Gesucht:} \\\text{Diagonale e} \qquad e \qquad [m] \\ \\ e = \frac{2\cdot A}{ f}\\ \textbf{Gegeben:} \\ f=\frac{1}{2}m \qquad A=4m^{2} \qquad \\ \\ \textbf{Rechnung:} \\ e = \frac{2\cdot A}{ f} \\ f=\frac{1}{2}m\\ A=4m^{2}\\ e = \frac{2\cdot 4m^{2}}{ \frac{1}{2}m}\\\\e=16m \\\\\\ \small \begin{array}{|l|} \hline f=\\ \hline \frac{1}{2} m \\ \hline 5 dm \\ \hline 50 cm \\ \hline 500 mm \\ \hline 5\cdot 10^{5} \mu m \\ \hline \end{array} \small \begin{array}{|l|} \hline A=\\ \hline 4 m^2 \\ \hline 400 dm^2 \\ \hline 4\cdot 10^{4} cm^2 \\ \hline 4\cdot 10^{6} mm^2 \\ \hline \frac{1}{25} a \\ \hline 0,0004 ha \\ \hline \end{array} \small \begin{array}{|l|} \hline e=\\ \hline 16 m \\ \hline 160 dm \\ \hline 1,6\cdot 10^{3} cm \\ \hline 1,6\cdot 10^{4} mm \\ \hline 1,6\cdot 10^{7} \mu m \\ \hline \end{array} \end{array}$