-
<<
>>
G
B
I
$ A = \frac{1}{2}\cdot e\cdot f $
$ e = \frac{2\cdot A}{ f} $
$ f = \frac{2\cdot A}{ e} $
Geometrie-Viereck-Raute
$A = \frac{1}{2}\cdot e\cdot f$
1
2
3
4
5
6
7
8
9
10
11
12
$e = \frac{2\cdot A}{ f}$
1
2
3
4
5
6
7
8
9
10
11
12
$f = \frac{2\cdot A}{ e}$
1
2
3
4
5
6
7
8
9
10
11
12
Beispiel Nr: 04
$\begin{array}{l}
\text{Gegeben:}\\\text{Diagonale f} \qquad f \qquad [m] \\
\text{Diagonale e} \qquad e \qquad [m] \\
\\ \text{Gesucht:} \\\text{Fläche} \qquad A \qquad [m^{2}] \\
\\ A = \frac{1}{2}\cdot e\cdot f\\ \textbf{Gegeben:} \\ f=12m \qquad e=14m \qquad \\ \\ \textbf{Rechnung:} \\
A = \frac{1}{2}\cdot e\cdot f \\
f=12m\\
e=14m\\
A = \frac{1}{2}\cdot 14m\cdot 12m \\\\ A=84m^{2}
\\\\\\ \small \begin{array}{|l|} \hline f=\\ \hline 12 m \\ \hline 120 dm \\ \hline 1,2\cdot 10^{3} cm \\ \hline 1,2\cdot 10^{4} mm \\ \hline 1,2\cdot 10^{7} \mu m \\ \hline \end{array} \small \begin{array}{|l|} \hline e=\\ \hline 14 m \\ \hline 140 dm \\ \hline 1,4\cdot 10^{3} cm \\ \hline 1,4\cdot 10^{4} mm \\ \hline 1,4\cdot 10^{7} \mu m \\ \hline \end{array} \small \begin{array}{|l|} \hline A=\\ \hline 84 m^2 \\ \hline 8,4\cdot 10^{3} dm^2 \\ \hline 8,4\cdot 10^{5} cm^2 \\ \hline 8,4\cdot 10^{7} mm^2 \\ \hline \frac{21}{25} a \\ \hline 0,0084 ha \\ \hline \end{array} \end{array}$