- 
            
                    << 
    
                  >>  
    G         
                             B          
                
                 I         
                                                 
                                         
 $ A = \frac{1}{2}\cdot e\cdot f $
                                      
                                          $ e = \frac{2\cdot A}{ f} $
                                      
                                          $ f = \frac{2\cdot A}{ e} $
Geometrie-Viereck-Raute
 $A = \frac{1}{2}\cdot e\cdot f$ 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
 $e = \frac{2\cdot A}{ f}$ 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
 $f = \frac{2\cdot A}{ e}$ 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
            
        
                Beispiel Nr: 04
            
        
           $\begin{array}{l} 
      \text{Gegeben:}\\\text{Fläche} \qquad A \qquad [m^{2}] \\
      \text{Diagonale e} \qquad e \qquad [m] \\
      \\ \text{Gesucht:} \\\text{Diagonale f} \qquad f \qquad [m] \\
     \\ f = \frac{2\cdot A}{ e}\\ \textbf{Gegeben:} \\ A=12m^{2} \qquad e=14m \qquad \\ \\ \textbf{Rechnung:} \\
      f = \frac{2\cdot A}{ e} \\
      A=12m^{2}\\
      e=14m\\
      f = \frac{2\cdot 12m^{2}}{ 14m}\\\\f=1\frac{5}{7}m
    \\\\\\ \small \begin{array}{|l|} \hline A=\\  \hline 12 m^2  \\  \hline 1,2\cdot 10^{3} dm^2  \\  \hline 1,2\cdot 10^{5} cm^2  \\  \hline 1,2\cdot 10^{7} mm^2  \\  \hline \frac{3}{25} a  \\  \hline 0,0012 ha  \\ \hline \end{array} \small \begin{array}{|l|} \hline e=\\  \hline 14 m  \\  \hline 140 dm  \\  \hline 1,4\cdot 10^{3} cm  \\  \hline 1,4\cdot 10^{4} mm  \\  \hline 1,4\cdot 10^{7} \mu m  \\ \hline \end{array} \small \begin{array}{|l|} \hline f=\\  \hline 1\frac{5}{7} m  \\  \hline 17\frac{1}{7} dm  \\  \hline 171\frac{3}{7} cm  \\  \hline 1714\frac{2}{7} mm  \\  \hline 1714285\frac{5}{7} \mu m  \\ \hline \end{array}  \end{array}$