Geometrie-Viereck-Raute

$A = \frac{1}{2}\cdot e\cdot f$
1 2 3 4 5 6 7 8 9 10 11 12
$e = \frac{2\cdot A}{ f}$
1 2 3 4 5 6 7 8 9 10 11 12
$f = \frac{2\cdot A}{ e}$
1 2 3 4 5 6 7 8 9 10 11 12
Beispiel Nr: 04
$\begin{array}{l} \text{Gegeben:}\\\text{Fläche} \qquad A \qquad [m^{2}] \\ \text{Diagonale e} \qquad e \qquad [m] \\ \\ \text{Gesucht:} \\\text{Diagonale f} \qquad f \qquad [m] \\ \\ f = \frac{2\cdot A}{ e}\\ \textbf{Gegeben:} \\ A=12m^{2} \qquad e=14m \qquad \\ \\ \textbf{Rechnung:} \\ f = \frac{2\cdot A}{ e} \\ A=12m^{2}\\ e=14m\\ f = \frac{2\cdot 12m^{2}}{ 14m}\\\\f=1\frac{5}{7}m \\\\\\ \small \begin{array}{|l|} \hline A=\\ \hline 12 m^2 \\ \hline 1,2\cdot 10^{3} dm^2 \\ \hline 1,2\cdot 10^{5} cm^2 \\ \hline 1,2\cdot 10^{7} mm^2 \\ \hline \frac{3}{25} a \\ \hline 0,0012 ha \\ \hline \end{array} \small \begin{array}{|l|} \hline e=\\ \hline 14 m \\ \hline 140 dm \\ \hline 1,4\cdot 10^{3} cm \\ \hline 1,4\cdot 10^{4} mm \\ \hline 1,4\cdot 10^{7} \mu m \\ \hline \end{array} \small \begin{array}{|l|} \hline f=\\ \hline 1\frac{5}{7} m \\ \hline 17\frac{1}{7} dm \\ \hline 171\frac{3}{7} cm \\ \hline 1714\frac{2}{7} mm \\ \hline 1714285\frac{5}{7} \mu m \\ \hline \end{array} \end{array}$