Geometrie-Viereck-Raute

$A = \frac{1}{2}\cdot e\cdot f$
1 2 3 4 5 6 7 8 9 10 11 12
$e = \frac{2\cdot A}{ f}$
1 2 3 4 5 6 7 8 9 10 11 12
$f = \frac{2\cdot A}{ e}$
1 2 3 4 5 6 7 8 9 10 11 12
Beispiel Nr: 06
$\begin{array}{l} \text{Gegeben:}\\\text{Diagonale f} \qquad f \qquad [m] \\ \text{Fläche} \qquad A \qquad [m^{2}] \\ \\ \text{Gesucht:} \\\text{Diagonale e} \qquad e \qquad [m] \\ \\ e = \frac{2\cdot A}{ f}\\ \textbf{Gegeben:} \\ f=120m \qquad A=80m^{2} \qquad \\ \\ \textbf{Rechnung:} \\ e = \frac{2\cdot A}{ f} \\ f=120m\\ A=80m^{2}\\ e = \frac{2\cdot 80m^{2}}{ 120m}\\\\e=1\frac{1}{3}m \\\\\\ \small \begin{array}{|l|} \hline f=\\ \hline 120 m \\ \hline 1,2\cdot 10^{3} dm \\ \hline 1,2\cdot 10^{4} cm \\ \hline 1,2\cdot 10^{5} mm \\ \hline 1,2\cdot 10^{8} \mu m \\ \hline \end{array} \small \begin{array}{|l|} \hline A=\\ \hline 80 m^2 \\ \hline 8\cdot 10^{3} dm^2 \\ \hline 8\cdot 10^{5} cm^2 \\ \hline 8\cdot 10^{7} mm^2 \\ \hline \frac{4}{5} a \\ \hline \frac{1}{125} ha \\ \hline \end{array} \small \begin{array}{|l|} \hline e=\\ \hline 1\frac{1}{3} m \\ \hline 13\frac{1}{3} dm \\ \hline 133\frac{1}{3} cm \\ \hline 1333\frac{1}{3} mm \\ \hline 1333333\frac{1}{3} \mu m \\ \hline \end{array} \end{array}$