-
<<
>>
G
B
I
$ A = \frac{a\cdot b}{ 2} $
$ a = \frac{A \cdot 2}{ b} $
$ b = \frac{A \cdot 2}{ a} $
$ c =\sqrt{a^{2} + b^{2} } $
$ a =\sqrt{c^{2} - b^{2} } $
$ b =\sqrt{c^{2} - a^{2} } $
$ h = \sqrt{p\cdot q} $
$ q = \frac{h^{2} }{p} $
$ p = \frac{h^{2} }{q} $
$ a = \sqrt{c\cdot p} $
$ c = \frac{a^{2} }{p} $
$ p = \frac{a^{2} }{c} $
Geometrie-Dreieck-Rechtwinkliges Dreieck
$A = \frac{a\cdot b}{ 2}$
1
2
3
4
5
6
7
8
9
10
11
12
$a = \frac{A \cdot 2}{ b}$
1
2
3
4
5
6
7
8
9
10
11
12
$b = \frac{A \cdot 2}{ a}$
1
2
3
4
5
6
7
8
9
10
11
12
$a^{2} + b^{2}=c^{2}$
$c =\sqrt{a^{2} + b^{2} }$
1
2
3
4
5
6
7
8
9
10
11
12
$a =\sqrt{c^{2} - b^{2} }$
1
2
3
4
5
6
7
8
9
10
$b =\sqrt{c^{2} - a^{2} }$
1
2
3
4
5
$h^{2} = p\cdot q$
$h = \sqrt{p\cdot q}$
1
2
3
4
$q = \frac{h^{2} }{p}$
1
2
3
4
$p = \frac{h^{2} }{q}$
1
2
3
$a^{2} = c\cdot p \qquad b^{2} = c\cdot q $
$a = \sqrt{c\cdot p}$
1
2
3
$c = \frac{a^{2} }{p}$
1
2
3
4
$p = \frac{a^{2} }{c}$
1
2
3
4
Beispiel Nr: 06
$\begin{array}{l}
\text{Gegeben:}\\\text{Kathete} \qquad b \qquad [m] \\
\text{Fläche des Dreiecks} \qquad A \qquad [m^{2}] \\
\\ \text{Gesucht:} \\\text{Gegenkathete zu} \alpha \qquad a \qquad [m] \\
\\ a = \frac{A \cdot 2}{ b}\\ \textbf{Gegeben:} \\ b=120m \qquad A=80m^{2} \qquad \\ \\ \textbf{Rechnung:} \\
a = \frac{A \cdot 2}{ b} \\
b=120m\\
A=80m^{2}\\
a = \frac{80m^{2} \cdot 2}{ 120m}\\\\a=1\frac{1}{3}m
\\\\\\ \small \begin{array}{|l|} \hline b=\\ \hline 120 m \\ \hline 1,2\cdot 10^{3} dm \\ \hline 1,2\cdot 10^{4} cm \\ \hline 1,2\cdot 10^{5} mm \\ \hline 1,2\cdot 10^{8} \mu m \\ \hline \end{array} \small \begin{array}{|l|} \hline A=\\ \hline 80 m^2 \\ \hline 8\cdot 10^{3} dm^2 \\ \hline 8\cdot 10^{5} cm^2 \\ \hline 8\cdot 10^{7} mm^2 \\ \hline \frac{4}{5} a \\ \hline \frac{1}{125} ha \\ \hline \end{array} \small \begin{array}{|l|} \hline a=\\ \hline 1\frac{1}{3} m \\ \hline 13\frac{1}{3} dm \\ \hline 133\frac{1}{3} cm \\ \hline 1333\frac{1}{3} mm \\ \hline 1333333\frac{1}{3} \mu m \\ \hline \end{array} \end{array}$