Geometrie-Dreieck-Rechtwinkliges Dreieck


  • $A = \frac{a\cdot b}{ 2}$
    1 2 3 4 5 6 7 8 9 10 11 12
    $a = \frac{A \cdot 2}{ b}$
    1 2 3 4 5 6 7 8 9 10 11 12
    $b = \frac{A \cdot 2}{ a}$
    1 2 3 4 5 6 7 8 9 10 11 12
    $a^{2} + b^{2}=c^{2}$
    $c =\sqrt{a^{2} + b^{2} }$
    1 2 3 4 5 6 7 8 9 10 11 12
    $a =\sqrt{c^{2} - b^{2} }$
    1 2 3 4 5 6 7 8 9 10
    $b =\sqrt{c^{2} - a^{2} }$
    1 2 3 4 5
    $h^{2} = p\cdot q$
    $h = \sqrt{p\cdot q}$
    1 2 3 4
    $q = \frac{h^{2} }{p}$
    1 2 3 4
    $p = \frac{h^{2} }{q}$
    1 2 3
    $a^{2} = c\cdot p \qquad b^{2} = c\cdot q $
    $a = \sqrt{c\cdot p}$
    1 2 3
    $c = \frac{a^{2} }{p}$
    1 2 3 4
    $p = \frac{a^{2} }{c}$
    1 2 3 4

Beispiel Nr: 02
$ \text{Gegeben:}\\\text{Fläche des Dreiecks} \qquad A \qquad [m^{2}] \\ \text{Kathete} \qquad a \qquad [m] \\ \\ \text{Gesucht:} \\\text{Ankathete zu } \alpha \qquad b \qquad [m] \\ \\ b = \frac{A \cdot 2}{ a}\\ \textbf{Gegeben:} \\ A_{d}=1m^{2} \qquad a=4m \qquad \\ \\ \textbf{Rechnung:} \\ b = \frac{A \cdot 2}{ a} \\ A=1m^{2}\\ a=4m\\ b = \frac{1m^{2} \cdot 2}{ 4m}\\\\b=\frac{1}{2}m \\\\\\ \small \begin{array}{|l|} \hline A=\\ \hline 1 m^2 \\ \hline 100 dm^2 \\ \hline 10^{4} cm^2 \\ \hline 10^{6} mm^2 \\ \hline \frac{1}{100} a \\ \hline 0,0001 ha \\ \hline \end{array} \small \begin{array}{|l|} \hline a=\\ \hline 4 m \\ \hline 40 dm \\ \hline 400 cm \\ \hline 4\cdot 10^{3} mm \\ \hline 4\cdot 10^{6} \mu m \\ \hline \end{array} \small \begin{array}{|l|} \hline b=\\ \hline \frac{1}{2} m \\ \hline 5 dm \\ \hline 50 cm \\ \hline 500 mm \\ \hline 5\cdot 10^{5} \mu m \\ \hline \end{array}$