- 
            
                    << 
    
                  >>  
    G         
                             B          
                
                 I         
                                                 
                                         
 
 $ A = \frac{1}{2}\cdot e\cdot f $
                                      
                                          $ e = \frac{2\cdot A}{ f} $
                                      
                                          $ f = \frac{2\cdot A}{ e} $
Geometrie-Viereck-Raute
 $A = \frac{1}{2}\cdot e\cdot f$ 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
 $e = \frac{2\cdot A}{ f}$ 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
 $f = \frac{2\cdot A}{ e}$ 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
            
        
                Beispiel Nr: 07
            
        
           $\begin{array}{l} 
      \text{Gegeben:}\\\text{Fläche} \qquad A \qquad [m^{2}] \\
      \text{Diagonale e} \qquad e \qquad [m] \\
      \\ \text{Gesucht:} \\\text{Diagonale f} \qquad f \qquad [m] \\
     \\ f = \frac{2\cdot A}{ e}\\ \textbf{Gegeben:} \\ A=1\frac{2}{3}m^{2} \qquad e=\frac{4}{5}m \qquad \\ \\ \textbf{Rechnung:} \\
      f = \frac{2\cdot A}{ e} \\
      A=1\frac{2}{3}m^{2}\\
      e=\frac{4}{5}m\\
      f = \frac{2\cdot 1\frac{2}{3}m^{2}}{ \frac{4}{5}m}\\\\f=4\frac{1}{6}m
    \\\\\\ \small \begin{array}{|l|} \hline A=\\  \hline 1\frac{2}{3} m^2  \\  \hline 166\frac{2}{3} dm^2  \\  \hline 16666\frac{2}{3} cm^2  \\  \hline 1666666\frac{2}{3} mm^2  \\  \hline \frac{1}{60} a  \\  \hline 0,000167 ha  \\ \hline \end{array} \small \begin{array}{|l|} \hline e=\\  \hline \frac{4}{5} m  \\  \hline 8 dm  \\  \hline 80 cm  \\  \hline 800 mm  \\  \hline 8\cdot 10^{5} \mu m  \\ \hline \end{array} \small \begin{array}{|l|} \hline f=\\  \hline 4\frac{1}{6} m  \\  \hline 41\frac{2}{3} dm  \\  \hline 416\frac{2}{3} cm  \\  \hline 4166\frac{2}{3} mm  \\  \hline 4166666\frac{2}{3} \mu m  \\ \hline \end{array}  \end{array}$