Geometrie-Viereck-Raute

$A = \frac{1}{2}\cdot e\cdot f$
1 2 3 4 5 6 7 8 9 10 11 12
$e = \frac{2\cdot A}{ f}$
1 2 3 4 5 6 7 8 9 10 11 12
$f = \frac{2\cdot A}{ e}$
1 2 3 4 5 6 7 8 9 10 11 12
Beispiel Nr: 08
$\begin{array}{l} \text{Gegeben:}\\\text{Fläche} \qquad A \qquad [m^{2}] \\ \text{Diagonale e} \qquad e \qquad [m] \\ \\ \text{Gesucht:} \\\text{Diagonale f} \qquad f \qquad [m] \\ \\ f = \frac{2\cdot A}{ e}\\ \textbf{Gegeben:} \\ A=0,002m^{2} \qquad e=\frac{2}{5}m \qquad \\ \\ \textbf{Rechnung:} \\ f = \frac{2\cdot A}{ e} \\ A=0,002m^{2}\\ e=\frac{2}{5}m\\ f = \frac{2\cdot 0,002m^{2}}{ \frac{2}{5}m}\\\\f=\frac{1}{100}m \\\\\\ \small \begin{array}{|l|} \hline A=\\ \hline 0,002 m^2 \\ \hline \frac{1}{5} dm^2 \\ \hline 20 cm^2 \\ \hline 2\cdot 10^{3} mm^2 \\ \hline 2\cdot 10^{-5} a \\ \hline 2\cdot 10^{-7} ha \\ \hline \end{array} \small \begin{array}{|l|} \hline e=\\ \hline \frac{2}{5} m \\ \hline 4 dm \\ \hline 40 cm \\ \hline 400 mm \\ \hline 4\cdot 10^{5} \mu m \\ \hline \end{array} \small \begin{array}{|l|} \hline f=\\ \hline \frac{1}{100} m \\ \hline \frac{1}{10} dm \\ \hline 1 cm \\ \hline 10 mm \\ \hline 10^{4} \mu m \\ \hline \end{array} \end{array}$