-
<<
>>
G
B
I
$ A = \frac{1}{2}\cdot e\cdot f $
$ e = \frac{2\cdot A}{ f} $
$ f = \frac{2\cdot A}{ e} $
Geometrie-Viereck-Raute
$A = \frac{1}{2}\cdot e\cdot f$
1
2
3
4
5
6
7
8
9
10
11
12
$e = \frac{2\cdot A}{ f}$
1
2
3
4
5
6
7
8
9
10
11
12
$f = \frac{2\cdot A}{ e}$
1
2
3
4
5
6
7
8
9
10
11
12
Beispiel Nr: 12
$\begin{array}{l}
\text{Gegeben:}\\\text{Diagonale f} \qquad f \qquad [m] \\
\text{Fläche} \qquad A \qquad [m^{2}] \\
\\ \text{Gesucht:} \\\text{Diagonale e} \qquad e \qquad [m] \\
\\ e = \frac{2\cdot A}{ f}\\ \textbf{Gegeben:} \\ f=\frac{3}{5}m \qquad A=1m^{2} \qquad \\ \\ \textbf{Rechnung:} \\
e = \frac{2\cdot A}{ f} \\
f=\frac{3}{5}m\\
A=1m^{2}\\
e = \frac{2\cdot 1m^{2}}{ \frac{3}{5}m}\\\\e=3\frac{1}{3}m
\\\\\\ \small \begin{array}{|l|} \hline f=\\ \hline \frac{3}{5} m \\ \hline 6 dm \\ \hline 60 cm \\ \hline 600 mm \\ \hline 6\cdot 10^{5} \mu m \\ \hline \end{array} \small \begin{array}{|l|} \hline A=\\ \hline 1 m^2 \\ \hline 100 dm^2 \\ \hline 10^{4} cm^2 \\ \hline 10^{6} mm^2 \\ \hline \frac{1}{100} a \\ \hline 0,0001 ha \\ \hline \end{array} \small \begin{array}{|l|} \hline e=\\ \hline 3\frac{1}{3} m \\ \hline 33\frac{1}{3} dm \\ \hline 333\frac{1}{3} cm \\ \hline 3333\frac{1}{3} mm \\ \hline 3333333\frac{1}{3} \mu m \\ \hline \end{array} \end{array}$