-
<<
>>
G
B
I
$ A = \frac{a\cdot b}{ 2} $
$ a = \frac{A \cdot 2}{ b} $
$ b = \frac{A \cdot 2}{ a} $
$ c =\sqrt{a^{2} + b^{2} } $
$ a =\sqrt{c^{2} - b^{2} } $
$ b =\sqrt{c^{2} - a^{2} } $
$ h = \sqrt{p\cdot q} $
$ q = \frac{h^{2} }{p} $
$ p = \frac{h^{2} }{q} $
$ a = \sqrt{c\cdot p} $
$ c = \frac{a^{2} }{p} $
$ p = \frac{a^{2} }{c} $
Geometrie-Dreieck-Rechtwinkliges Dreieck
$A = \frac{a\cdot b}{ 2}$
1
2
3
4
5
6
7
8
9
10
11
12
$a = \frac{A \cdot 2}{ b}$
1
2
3
4
5
6
7
8
9
10
11
12
$b = \frac{A \cdot 2}{ a}$
1
2
3
4
5
6
7
8
9
10
11
12
$a^{2} + b^{2}=c^{2}$
$c =\sqrt{a^{2} + b^{2} }$
1
2
3
4
5
6
7
8
9
10
11
12
$a =\sqrt{c^{2} - b^{2} }$
1
2
3
4
5
6
7
8
9
10
$b =\sqrt{c^{2} - a^{2} }$
1
2
3
4
5
$h^{2} = p\cdot q$
$h = \sqrt{p\cdot q}$
1
2
3
4
$q = \frac{h^{2} }{p}$
1
2
3
4
$p = \frac{h^{2} }{q}$
1
2
3
$a^{2} = c\cdot p \qquad b^{2} = c\cdot q $
$a = \sqrt{c\cdot p}$
1
2
3
$c = \frac{a^{2} }{p}$
1
2
3
4
$p = \frac{a^{2} }{c}$
1
2
3
4
Beispiel Nr: 12
$\begin{array}{l}
\text{Gegeben:}\\ \text{Kathete} \qquad a \qquad [m] \\
\text{Kathete} \qquad b \qquad [m] \\
\\ \text{Gesucht:} \\\text{Hypotenuse} \qquad c \qquad [m] \\
\\ c =\sqrt{a^{2} + b^{2} }\\ \textbf{Gegeben:} \\ a=1\frac{1}{2}m \qquad b=\frac{1}{5}m \qquad \\ \\ \textbf{Rechnung:} \\
c =\sqrt{a^{2} + b^{2} } \\
a=1\frac{1}{2}m\\
b=\frac{1}{5}m\\
c =\sqrt{(1\frac{1}{2}m)^{2} + (\frac{1}{5}m)^{2} }\\\\c=1\frac{58}{113}m
\\\\\\ \small \begin{array}{|l|} \hline a=\\ \hline 1\frac{1}{2} m \\ \hline 15 dm \\ \hline 150 cm \\ \hline 1,5\cdot 10^{3} mm \\ \hline 1,5\cdot 10^{6} \mu m \\ \hline \end{array} \small \begin{array}{|l|} \hline b=\\ \hline \frac{1}{5} m \\ \hline 2 dm \\ \hline 20 cm \\ \hline 200 mm \\ \hline 2\cdot 10^{5} \mu m \\ \hline \end{array} \small \begin{array}{|l|} \hline c=\\ \hline 1\frac{58}{113} m \\ \hline 15,1 dm \\ \hline 151 cm \\ \hline 1,51\cdot 10^{3} mm \\ \hline 1513274\frac{72}{121} \mu m \\ \hline \end{array} \end{array}$