- 
            
                    << 
    
                  >>  
    G         
                             B          
                
                 I         
                                                 
                                         
 $ A = a\cdot b $
                                      
                                          $ a = \frac{A}{b} $
                                      
                                          $ b = \frac{A}{a} $
                                      
                                          $ U = 2\cdot a + 2\cdot b $
                                      
                                          $ a = \frac{U - 2\cdot b}{  2} $
                                      
                                          $ b = \frac{U - 2\cdot a}{  2} $
                                      
                                          $ d = \sqrt{a^{2} +b^{2} } $
                                      
                                          $ b = \sqrt{d^{2} -a^{2} } $
                                      
                                          $ a = \sqrt{d^{2} -b^{2} } $
Geometrie-Viereck-Rechteck
 $A = a\cdot b$ 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
 $a = \frac{A}{b}$ 
1 
2 
3 
4 
5 
 $b = \frac{A}{a}$ 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
 $U = 2\cdot a + 2\cdot b$ 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
 $a = \frac{U - 2\cdot b}{  2}$ 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
 $b = \frac{U - 2\cdot a}{  2}$ 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
 $d = \sqrt{a^{2} +b^{2} }$ 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
 $b = \sqrt{d^{2} -a^{2} }$ 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
 $a = \sqrt{d^{2} -b^{2} }$ 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
            
        
                Beispiel Nr: 09
            
        
           $\begin{array}{l} 
      \text{Gegeben:}\\\text{Breite} \qquad b \qquad [m] \\
      \text{Länge} \qquad a \qquad [m] \\
      \\ \text{Gesucht:} \\\text{Diagonale} \qquad d \qquad [m] \\
     \\ d = \sqrt{a^{2} +b^{2} }\\ \textbf{Gegeben:} \\ b=1\frac{2}{3}m \qquad a=\frac{4}{5}m \qquad \\ \\ \textbf{Rechnung:} \\
      d = \sqrt{a^{2} +b^{2} } \\
      b=1\frac{2}{3}m\\
      a=\frac{4}{5}m\\
      d = \sqrt{(\frac{4}{5}m)^{2} +(1\frac{2}{3}m)^{2} }\\\\d=1,85m
    \\\\\\ \small \begin{array}{|l|} \hline b=\\  \hline 1\frac{2}{3} m  \\  \hline 16\frac{2}{3} dm  \\  \hline 166\frac{2}{3} cm  \\  \hline 1666\frac{2}{3} mm  \\  \hline 1666666\frac{2}{3} \mu m  \\ \hline \end{array} \small \begin{array}{|l|} \hline a=\\  \hline \frac{4}{5} m  \\  \hline 8 dm  \\  \hline 80 cm  \\  \hline 800 mm  \\  \hline 8\cdot 10^{5} \mu m  \\ \hline \end{array} \small \begin{array}{|l|} \hline d=\\  \hline 1,85 m  \\  \hline 18,5 dm  \\  \hline 185 cm  \\  \hline 1,85\cdot 10^{3} mm  \\  \hline 1,85\cdot 10^{6} \mu m  \\ \hline \end{array}  \end{array}$