-
<<
>>
G
B
I
$ A = a\cdot b $
$ a = \frac{A}{b} $
$ b = \frac{A}{a} $
$ U = 2\cdot a + 2\cdot b $
$ a = \frac{U - 2\cdot b}{ 2} $
$ b = \frac{U - 2\cdot a}{ 2} $
$ d = \sqrt{a^{2} +b^{2} } $
$ b = \sqrt{d^{2} -a^{2} } $
$ a = \sqrt{d^{2} -b^{2} } $
Geometrie-Viereck-Rechteck
$A = a\cdot b$
1
2
3
4
5
6
7
8
9
10
11
12
$a = \frac{A}{b}$
1
2
3
4
5
$b = \frac{A}{a}$
1
2
3
4
5
6
7
8
9
10
11
12
13
$U = 2\cdot a + 2\cdot b$
1
2
3
4
5
6
7
8
9
10
11
12
13
$a = \frac{U - 2\cdot b}{ 2}$
1
2
3
4
5
6
7
8
9
10
11
$b = \frac{U - 2\cdot a}{ 2}$
1
2
3
4
5
6
7
8
9
10
11
12
$d = \sqrt{a^{2} +b^{2} }$
1
2
3
4
5
6
7
8
9
10
11
12
$b = \sqrt{d^{2} -a^{2} }$
1
2
3
4
5
6
7
8
9
10
$a = \sqrt{d^{2} -b^{2} }$
1
2
3
4
5
6
7
8
9
10
Beispiel Nr: 12
$\begin{array}{l}
\text{Gegeben:}\\\text{Breite} \qquad b \qquad [m] \\
\text{Länge} \qquad a \qquad [m] \\
\\ \text{Gesucht:} \\\text{Diagonale} \qquad d \qquad [m] \\
\\ d = \sqrt{a^{2} +b^{2} }\\ \textbf{Gegeben:} \\ b=1\frac{1}{2}m \qquad a=\frac{1}{5}m \qquad \\ \\ \textbf{Rechnung:} \\
d = \sqrt{a^{2} +b^{2} } \\
b=1\frac{1}{2}m\\
a=\frac{1}{5}m\\
d = \sqrt{(\frac{1}{5}m)^{2} +(1\frac{1}{2}m)^{2} }\\\\d=1\frac{58}{113}m
\\\\\\ \small \begin{array}{|l|} \hline b=\\ \hline 1\frac{1}{2} m \\ \hline 15 dm \\ \hline 150 cm \\ \hline 1,5\cdot 10^{3} mm \\ \hline 1,5\cdot 10^{6} \mu m \\ \hline \end{array} \small \begin{array}{|l|} \hline a=\\ \hline \frac{1}{5} m \\ \hline 2 dm \\ \hline 20 cm \\ \hline 200 mm \\ \hline 2\cdot 10^{5} \mu m \\ \hline \end{array} \small \begin{array}{|l|} \hline d=\\ \hline 1\frac{58}{113} m \\ \hline 15,1 dm \\ \hline 151 cm \\ \hline 1,51\cdot 10^{3} mm \\ \hline 1513274\frac{72}{121} \mu m \\ \hline \end{array} \end{array}$