Algebra-Lineare Algebra-Determinante



Beispiel Nr: 12
$ \text{Gegeben: } D=\left|\begin{array}{ccc} a1\ & b1 & c1\\ a2&b2 & c2\\ a3& b3 & c3 \end{array}\right| \\ \\ \\ \text{Gesucht: } \\\text{ Wert der Determinante D } \\ \\ \textbf{Gegeben:} \\ D=\left|\begin{array}{ccc} \frac{1}{17}\ & 14 & \frac{1}{4}\\ 1\frac{2}{17}&\frac{1}{3} & 6\frac{1}{2}\\ \frac{2}{3}& \frac{8}{11} & \frac{8}{17} \end{array}\right| \\ \\ \textbf{Rechnung:} \\ D=\left|\begin{array}{ccc} \frac{1}{17}\ & 14 & \frac{1}{4}\\ 1\frac{2}{17}&\frac{1}{3} & 6\frac{1}{2}\\ \frac{2}{3}& \frac{8}{11} & \frac{8}{17} \\ \end{array}\right| \begin{array}{cc} \frac{1}{17}\ & 14 \\ 1\frac{2}{17}&\frac{1}{3} \\ \frac{2}{3}& \frac{8}{11} \end{array} \\ D=\frac{1}{17} \cdot \frac{1}{3} \cdot \frac{8}{17}+ 14 \cdot 6\frac{1}{2} \cdot \frac{2}{3} + \frac{1}{4} \cdot 1\frac{2}{17} \cdot \frac{8}{11} \\ - \frac{1}{4} \cdot \frac{1}{3} \cdot \frac{2}{3} - \frac{1}{17} \cdot 6\frac{1}{2} \cdot \frac{8}{11} - 14 \cdot 1\frac{2}{17} \cdot \frac{8}{17}=53,2 $